Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(2): e0011993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408129

RESUMO

Spotted fever group rickettsiae are tick-borne obligate intracellular bacteria that infect microvascular endothelial cells. Humans and mammalian infection results in endothelial cell barrier dysfunction and increased vascular permeability. We previously demonstrated that treatment of Rickettsia parkeri-infected cells with the calcium channel blocker benidipine significantly delayed vascular barrier permeability. Thus, we hypothesized that benidipine, known to be safe and effective for other clinical processes, could reduce rickettsia-induced vascular permeability in vivo in an animal model of spotted fever rickettsiosis. Based on liver, lung and brain vascular FITC-dextran extravasation studies, benidipine did not reliably impact vascular permeability. However, it precipitated a deleterious effect on responses to control sublethal R. parkeri infection. Animals treated with benidipine alone had no clinical signs or changes in histopathology and splenic immune cell distributions. Benidipine-treated infected animals had marked increases in tissue and blood bacterial loads, more extensive inflammatory histopathologic injury, and changes in splenic architecture and immune cell distributions potentially reflecting diminished Ca2+ signaling, reduced innate immune cell activation, and loss of rickettsial propagation control. Impaired T cell activation by R. parkeri antigen in the presence of benidipine was confirmed in vitro with the use of NKT cell hybridomas. The unexpected findings stand in stark contrast to recent discussions of the benefits of calcium channel blockers for viral infections and chronic infectious or inflammatory diseases. A role for calcium channel blockers in exacerbation of human rickettsiosis and acute inflammatory infections should be evaluated by a retrospective review of patient's outcomes and medications.


Assuntos
Di-Hidropiridinas , Infecções por Rickettsia , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Humanos , Camundongos , Animais , Modelos Animais de Doenças , Bloqueadores dos Canais de Cálcio , Células Endoteliais/patologia , Infecções por Rickettsia/microbiologia , Rickettsia/fisiologia , Rickettsiose do Grupo da Febre Maculosa/patologia , Imunidade Inata , Mamíferos
2.
Biochem Biophys Res Commun ; 663: 96-103, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121130

RESUMO

The tick-borne bacterium Rickettsia parkeri is an obligate intracellular pathogen that belongs to spotted fever group rickettsia (SFGR). The SFG pathogens are characterized by their ability to infect and rapidly proliferate inside host vascular endothelial cells that eventually result in impairment of vascular endothelium barrier functions. Benidipine, a wide range dihydropyridine calcium channel blocker, is used to prevent and treat cardiovascular diseases. In this study, we tested whether benidipine has protective effects against rickettsia-induced microvascular endothelial cell barrier dysfunction in vitro. We utilized an in vitro vascular model consisting of transformed human brain microvascular endothelial cells (tHBMECs) and continuously monitored transendothelial electric resistance (TEER) across the cell monolayer. We found that during the late stages of infection when we observed TEER decrease and when there was a gradual increase of the cytoplasmic [Ca2+], benidipine prevented these rickettsia-induced effects. In contrast, nifedipine, another cardiovascular dihydropyridine channel blocker specific for L-type Ca2+ channels, did not prevent R. parkeri-induced drop of TEER. Additionally, neither drug was bactericidal. These data suggest that growth of R. parkeri inside endothelial cells is associated with impairment of endothelial cell monolayer integrity due to Ca2+ flooding through specific, benidipine-sensitive T- or N/Q-type Ca2+ channels but not through nifedipine-sensitive L-type Ca2+ channels. Further study will be required to discern the exact nature of the Ca2+ channels and Ca2+ transporting system(s) involved, any contributions of the pathogen toward this process, as well as the suitability of benidipine and new dihydropyridine derivatives as complimentary therapeutic drugs against Rickettsia-induced vascular failure.


Assuntos
Di-Hidropiridinas , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Doenças Vasculares , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Células Endoteliais , Nifedipino/farmacologia , Di-Hidropiridinas/farmacologia , Rickettsiose do Grupo da Febre Maculosa/tratamento farmacológico
3.
Front Cell Infect Microbiol ; 12: 828605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719343

RESUMO

Anaplasma phagocytophilum, a tick-borne obligately intracellular bacterium of neutrophils, causes human granulocytic anaplasmosis. Ankyrin A (AnkA), an effector protein with multiple ankyrin repeats (AR) is injected via type IV-secretion into the host neutrophil to gain access to the nucleus where it modifies the epigenome to promote microbial fitness and propagation. AR proteins transported into the host cell nucleus must use at least one of two known eukaryotic pathways, the classical importin ß-dependent pathway, and/or the RanGDP- and AR (ankyrin-repeat)-dependent importin ß-independent (RaDAR) pathway. Truncation of the first four AnkA N-terminal ARs (AR1-4), but not other regions, prevents AnkA nuclear accumulation. To investigate the mechanism of nuclear import, we created point mutations of AnkA N-terminal ARs, predicted to interfere with RaDAR protein import, and used importazole, a specific inhibitor of the importin α/ß, RanGTP-dependent pathway. Nuclear colocalization analysis shows that nuclear localization of AnkA is unaffected by single AR1-4 mutations but is significantly reduced by single mutations in consecutive ARs suggesting RaDAR protein nuclear import. However, AnkA nuclear localization was also decreased with importazole, and with GTPγS. Furthermore, A. phagocytophilum growth in HL-60 cells was completely suppressed with importazole, indicating that A. phagocytophilum propagation requires a ß-importin-dependent pathway. A typical classical NLS overlapping AR4 was subsequently identified suggesting the primacy of the importin-α/ß system in AnkA nuclear localization. Whether the mutational studies of putative key residues support RaDAR NLS function or simply reflect structural changes that diminish engagement of an AR-NLS-importin pathway needs to be resolved through careful structure-function studies.


Assuntos
Anaplasma phagocytophilum , Transporte Ativo do Núcleo Celular , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/metabolismo , Animais , Anquirinas/metabolismo , Núcleo Celular/metabolismo , Humanos , Carioferinas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614101

RESUMO

The protozoan Trypanosoma brucei rhodesiense causes Human African Trypanosomiasis, also known as sleeping sickness, and penetrates the central nervous system, leading to meningoencephalitis. The Cathepsin L-like cysteine peptidase of T. b. rhodesiense has been implicated in parasite penetration of the blood-brain barrier and its activity is modulated by the chagasin-family endogenous inhibitor of cysteine peptidases (ICP). To investigate the role of ICP in T. b. rhodesiense bloodstream form, ICP-null (Δicp) mutants were generated, and lines re-expressing ICP (Δicp:ICP). Lysates of Δicp displayed increased E-64-sensitive cysteine peptidase activity and the mutant parasites traversed human brain microvascular endothelial cell (HBMEC) monolayers in vitro more efficiently. Δicp induced E-selectin in HBMECs, leading to the adherence of higher numbers of human neutrophils. In C57BL/6 mice, no Δicp parasites could be detected in the blood after 6 days, while mice infected with wild-type (WT) or Δicp:ICP displayed high parasitemia, peaking at day 12. In mice infected with Δicp, there was increased recruitment of monocytes to the site of inoculation and higher levels of IFN-γ in the spleen. At day 14, mice infected with Δicp exhibited higher preservation of the CD4+, CD8+, and CD19+ populations in the spleen, accompanied by sustained high IFN-γ, while NK1.1+ populations receded nearly to the levels of uninfected controls. We propose that ICP helps to downregulate inflammatory responses that contribute to the control of infection.


Assuntos
Proteínas de Protozoários , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Animais , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologia , Virulência , Proteínas de Protozoários/metabolismo
5.
PLoS Negl Trop Dis ; 15(6): e0009526, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153047

RESUMO

Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.


Assuntos
Inibidores de Serino Proteinase/metabolismo , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/imunologia , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais , Feminino , Inflamação , Camundongos Endogâmicos C57BL , Inibidores de Serino Proteinase/genética , Baço/parasitologia , Virulência
6.
J Infect Dis ; 221(9): 1438-1447, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31758693

RESUMO

Borrelia burgdorferi conserved gene products BB0406 and BB0405, members of a common B. burgdorferi paralogous gene family, share 59% similarity. Although both gene products can function as potential porins, only BB0405 is essential for infection. Here we show that, despite sequence homology and coexpression from the same operon, both proteins differ in their membrane localization attributes, antibody accessibility, and immunogenicity in mice. BB0406 is required for spirochete survival in mammalian hosts, particularly for the disseminated infection in distant organs. We identified that BB0406 interacts with laminin, one of the major constituents of the vascular basement membrane, and facilitates spirochete transmigration across host endothelial cell barriers. A better understanding of how B. burgdorferi transmigrates through dermal and tissue vascular barriers and establishes disseminated infections will contribute to the development of novel therapeutics to combat early infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Células Endoteliais/microbiologia , Interações Hospedeiro-Patógeno , Laminina/metabolismo , Doença de Lyme/microbiologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Expressão Gênica , Marcação de Genes , Teste de Complementação Genética , Humanos , Camundongos , Camundongos Endogâmicos C3H , Mutação , Ligação Proteica
7.
FASEB J ; 33(12): 13695-13709, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585507

RESUMO

We report that placental growth factor (PlGF) negatively affects the endothelial cell (EC) barrier function through a novel regulatory mechanism. The PlGF mAb promotes (but recombinant protein disrupts) EC barrier function, thus affecting the barrier-forming protein levels, membrane distribution, and EC monolayer impedance by the electrical cell-impedance sensing system, Western blot, and immunofluorescence staining. RNA sequencing-based transcriptome analysis identified the up-regulation of the pentose phosphate pathway (PPP) and the antioxidant defense protein by PlGF blockade. The PlGF and PlGF/VEGF dimers (but not VEGF-A) down-regulated the protein expression of glucose-6-phosphate dehydrogenase (G6PD) and peroxiredoxin (PRDX). G6PD inhibition and gene silencing (small interfering RNA) abolished the beneficial effects of PlGF inhibition on EC barrier function and PRDX3/6 protein expression. VEGF receptor (VEGFR)1 or VEGFR2 blockade prevented the inhibitory effect of PlGF on G6PD protein expression and EC barrier function. The PRDX6 played dual roles in EC barrier function through glutathione peroxidase and phospholipase A2 activity. In sum, PlGF negatively regulates EC barrier function through the activation of VEGFR1 and VEGFR2 and the suppression of the G6PD/PPP and the antioxidant pathways.-Huang, H., Lennikov, A., Saddala, M. S., Gozal, D., Grab, D. J., Khalyfa, A., Fan, L. Placental growth factor negatively regulates endothelial cell barrier function through suppression of glucose-6-phosphate dehydrogenase and antioxidant defense systems.


Assuntos
Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Fator de Crescimento Placentário/metabolismo , Retina/metabolismo , Células Cultivadas , Glutationa Peroxidase/metabolismo , Humanos , Fosfolipases A2/metabolismo , Vasos Retinianos/metabolismo , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
PLoS Negl Trop Dis ; 13(8): e0007631, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425540

RESUMO

OBJECTIVE: Where human African trypanosomiasis (HAT) patients are seen, failure to microscopically diagnose infections by Trypanosoma brucei gambiense in blood smears and/or cerebrospinal fluid (CSF) in the critical early stages of the disease is the single most important factor in treatment failure, a result of delayed treatment onset or its absence. We hypothesized that the enhanced sensitivity of detergent-enhanced loop-mediated isothermal amplification (LAMP) will allow for point of care (POC) detection of African trypanosomes in the CSF of HAT patients where the probability for detecting a single parasite or parasite DNA molecule in 1 µL of CSF sample is negligible by current methods. METHODOLOGY: We used LAMP targeting the multicopy pan-T. brucei repetitive insertion mobile element (RIME LAMP) and the Trypanosoma brucei gambiense 5.8S rRNA-internal transcribed spacer 2 gene (TBG1 LAMP). We tested 1 µL out of 20 µL sham or Triton X-100 treated CSFs from 73 stage-1 and 77 stage-2 HAT patients from the Central African Republic and 100 CSF negative controls. RESULTS: Under sham conditions, parasite DNA was detected by RIME and TBG1 LAMP in 1.4% of the stage-1 and stage-2 gambiense HAT CSF samples tested. After sample incubation with detergent, the number of LAMP parasite positive stage-2 CSF's increased to 26%, a value which included the 2 of the 4 CSF samples where trypanosomes were identified microscopically. Unexpected was the 41% increase in parasite positive stage-1 CSF's detected by LAMP. Cohen's kappa coefficients for RIME versus TBG1 LAMP of 0.92 (95%CI: 0.82-1.00) for stage-1 and 0.90 (95%CI: 0.80-1.00) for stage-2 reflected a high level of agreement between the data sets indicating that the results were not due to amplicon contamination, data confirmed in χ2 tests (p<0.001) and Fisher's exact probability test (p = 4.7e-13). CONCLUSION: This study detected genomic trypanosome DNA in the CSF independent of the HAT stage and may be consistent with early CNS entry and other scenarios that identify critical knowledge gaps for future studies. Detergent-enhanced LAMP could be applicable for non-invasive African trypanosome detection in human skin and saliva or as an epidemiologic tool for the determination of human (or animal) African trypanosome prevalence in areas where chronically low parasitemias are present.


Assuntos
Líquido Cefalorraquidiano/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Índice de Gravidade de Doença , Trypanosoma/isolamento & purificação , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , República Centro-Africana , Criança , Pré-Escolar , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Detergentes/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 5,8S/genética , Sensibilidade e Especificidade , Trypanosoma/genética , Adulto Jovem
9.
Sci Rep ; 8(1): 16728, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425286

RESUMO

Placental growth factor (PlGF or PGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a crucial role in pathological angiogenesis and inflammation. However, the underlying molecular mechanisms that PlGF mediates regarding the complications of non-proliferative diabetic retinopathy (DR) remain elusive. Using an LC-MS/MS-based label-free quantification proteomic approach we characterized the alterations in protein expression caused by PlGF ablation in the retinas obtained from C57BL6, Akita, PlGF-/- and Akita.PlGF-/- mice. After extraction and enzymatic digestion with Trypsin/LysC, the retinal proteins were analyzed by Q-Exactive hybrid Quadrupole-Orbitrap mass spectrometry. Differentially expressed proteins (DEPs) were identified in four comparisons based on Z-score normalization and reproducibility by Pearson's correlation coefficient. The gene ontology (GO), functional pathways, and protein-protein network interaction analysis suggested that several proteins involved in insulin resistance pathways (Gnb1, Gnb2, Gnb4, Gnai2, Gnao1, Snap2, and Gngt1) were significantly down-regulated in PlGF ablated Akita diabetic mice (Akita.PlGF-/- vs. Akita) but up-regulated in Akita vs. C57 and PlGF-/- vs. C57 conditions. Two proteins involved in the antioxidant activity and neural protection pathways, Prdx6 and Map2 respectively, were up-regulated in the Akita.PlGF-/- vs. Akita condition. Overall, we predict that down-regulation of proteins essential for insulin resistance, together with the up-regulation of antioxidant and neuroprotection proteins highlight and epitomize the potential mechanisms important for future anti-PlGF therapies in the treatment of DR.


Assuntos
Antioxidantes/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/fisiopatologia , Neuroproteção , Fator de Crescimento Placentário/genética , Proteômica , Retina/metabolismo , Animais , Retinopatia Diabética/genética , Técnicas de Inativação de Genes , Camundongos , Fator de Crescimento Placentário/deficiência , Mapeamento de Interação de Proteínas , Retina/patologia
10.
Am J Trop Med Hyg ; 96(2): 275-279, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273643

RESUMO

The loop-mediated isothermal amplification (LAMP) assay with its advantages of cost effectiveness, rapidity, and simplicity, has evolved as a sensitive and specific method for the detection of African trypanosomes. Highly sensitive LAMP reactions specific for Trypanosoma brucei rhodesiense or that recognize but do not discriminate between Trypanosoma brucei brucei, T. b. rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma evansi have been developed. A sensitive LAMP assay targeting the T. b. gambiense 5.8S ribosomal RNA internal transcribed spacer 2 (5.8S-ITS2) gene is also available but this assay does not target binding sites that span the CCCA (C3A) (557-560 bps) insertion site that further differentiates T. b. gambiense from T. b. brucei Here we describe 5.8S-ITS2-targeted LAMP assay that fit these criteria. The LAMP primer sets containing the T. b. gambiense-specific C3A tetranucleotide at the start of the outer forward primer sequences showed high specificity and sensitivity down to at least 0.1 fg T. b. gambiense genomic DNA.


Assuntos
Genes de Protozoários/genética , RNA Ribossômico 5,8S/genética , Trypanosoma brucei gambiense/genética , Tripanossomíase Africana/diagnóstico , Diagnóstico Precoce , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Tripanossomíase Africana/parasitologia
11.
J Vet Med Sci ; 77(12): 1573-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26227797

RESUMO

Ticks carry and transmit a remarkable array of pathogens including bacteria, protozoa and viruses, which may be of veterinary and/or of medical significance. With little to no information regarding the presence of tick-borne zoonotic pathogens or their known vectors in southern Africa, the aim of our study was to screen for Anaplasma phagocytophilum, Borrelia burgdorferi, Coxiella burnetii, Rickettsia species and Ehrlichia ruminantium in ticks collected and identified from ruminants in the Eastern Cape, Free State, KwaZulu-Natal and Mpumalanga Provinces of South Africa. The most abundant tick species identified in this study were Rhipicephalus evertsi evertsi (40%), Rhipicephalus species (35%), Amblyomma hebraeum (10%) and Rhipicephalus decoloratus (14%). A total of 1634 ticks were collected. DNA was extracted, and samples were subjected to PCR amplification and sequencing. The overall infection rates of ticks with the target pathogens in the four Provinces were as follows: A. phagocytophilum, 7%; C. burnetii, 7%; E. ruminantium, 28%; and Rickettsia spp., 27%. The presence of B. burgdorferi could not be confirmed. The findings of this study show that zoonotic pathogens are present in ticks in the studied South African provinces. This information will aid in the epidemiology of tick-borne zoonotic diseases in the country as well as in raising awareness about such diseases in the veterinary, medical and tourism sectors, as they may be the most affected.


Assuntos
Bactérias/isolamento & purificação , Ixodidae/microbiologia , Ruminantes/parasitologia , Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Zoonoses , Animais , Bactérias/classificação , África do Sul/epidemiologia , Infestações por Carrapato/epidemiologia
12.
Clin Vaccine Immunol ; 22(4): 374-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25651920

RESUMO

Loop-mediated isothermal amplification (LAMP) is a method for enzymatically replicating DNA that has great utility for clinical diagnosis at the point of care (POC), given its high sensitivity, specificity, speed, and technical requirements (isothermal conditions). Here, we adapted LAMP for measuring protein analytes by creating a protein-DNA fusion (referred to here as a "LAMPole") that attaches oligonucleotides (LAMP templates) to IgG antibodies. This fusion consists of a DNA element covalently bonded to an IgG-binding polypeptide (protein L/G domain). In our platform, LAMP is expected to provide the most suitable means for amplifying LAMPoles for clinical diagnosis at the POC, while quantitative PCR is more suitable for laboratory-based quantification of antigen-specific IgG abundance. As proof of concept, we measured serological responses to a protozoan parasite by quantifying changes in solution turbidity in real time. We observed a >6-log fold difference in signal between sera from vaccinated versus control mice and in a clinical patient sample versus a control. We assert that LAMPoles will be useful for increasing the sensitivity of measuring proteins, whether it be in a clinical laboratory or in a field setting, thereby improving acute diagnosis of a variety of infections.


Assuntos
Anticorpos Antiprotozoários/sangue , Imunoglobulina G/sangue , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Humanos , Camundongos
13.
Int J Angiol ; 24(1): 41-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27053915

RESUMO

African trypanosomes are tsetse fly transmitted protozoan parasites responsible for human African trypanosomiasis, a disease characterized by a plethora of neurological symptoms and death. How the parasites under microvascular shear stress (SS) flow conditions in the brain cross the blood-brain barrier (BBB) is not known. In vitro studies using static models comprised of human brain microvascular endothelial cells (BMEC) show that BBB activation and crossing by trypanosomes requires the orchestration of parasite cysteine proteases and host calcium-mediated cell signaling. Here, we examine BMEC barrier function and the activation of extracellular signal-regulated kinase (ERK)1/2 and ERK5, mitogen-activated protein kinase family regulators of microvascular permeability, under static and laminar SS flow and in the context of trypanosome infection. Confluent human BMEC were cultured in electric cell-substrate impedance sensing (ECIS) and parallel-plate glass slide chambers. The human BMEC were exposed to 2 or 14 dyn/cm(2) SS in the presence or absence of trypanosomes. Real-time changes in transendothelial electrical resistance (TEER) were monitored and phosphorylation of ERK1/2 and ERK5 analyzed by immunoblot assay. After reaching confluence under static conditions human BMEC TEER was found to rapidly increase when exposed to 2 dyn/cm(2) SS, a condition that mimics SS in brain postcapillary venules. Addition of African trypanosomes caused a rapid drop in human BMEC TEER. Increasing SS to 14 dyn/cm(2), a condition mimicking SS in brain capillaries, led to a transient increase in TEER in both control and infected human BMEC. However, no differences in ERK1/2 and ERK5 activation were found under any condition tested. African trypanosomiasis alters BBB permeability under low shear conditions through an ERK1/2 and ERK5 independent pathway.

14.
Parasitol Int ; 62(5): 461-3, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23811202

RESUMO

Malaria (Plasmodium spp.) and human African trypanosomiasis (Trypanosoma brucei spp.) are vector borne, deadly parasitic diseases. While chemotherapeutic agents for both diseases are available, difficulty in disease eradication and development of drug resistance require that new therapies targeting unexplored pathways or exploiting novel modes of action be developed. Intracellular Plasmodium and extracellular Trypanosoma brucei may have unique and essential requirements for divalent metal ions, beyond that deemed physiological for the host. Membrane Active Chelators (MACs), biologically active only in a hydrophobic lipid environment, are able to bind metal ions at elevated non-physiological concentrations in the vicinity of cell membranes. A dose-response relationship study using validated viability assays revealed that two MAC drugs, DP-b99 and DP-460, were cytotoxic for these parasites in vitro. The 50% effective concentration (EC50) values for DP-b99 and DP-460 were 87 µM and 39 µM for Trypanosoma brucei brucei and 21 µM and 28 µM for erythrocytic Plasmodium falciparum, respectively. Furthermore, drug potency was maintained for at least 24h in serum containing medium at 37°C. While the exact mechanism of action of MACs against intracellular malaria and extracellular African trypanosome parasites has yet to be determined, their potential as antiparasitic agents warrants further investigation.


Assuntos
Antimaláricos/farmacologia , Ácido Egtázico/análogos & derivados , Plasmodium/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Animais , Ácido Egtázico/química , Ácido Egtázico/farmacologia , Estrutura Molecular
15.
J Biol Chem ; 288(12): 8468-8478, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23376276

RESUMO

The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/enzimologia , Manganês/fisiologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Apoenzimas/isolamento & purificação , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Sequência Conservada , Ativação Enzimática , Ligação de Hidrogênio , Peróxido de Hidrogênio , Manganês/metabolismo , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Transporte Proteico , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/química , Superóxido Dismutase/isolamento & purificação
16.
PLoS One ; 7(8): e43913, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952808

RESUMO

Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.


Assuntos
Encéfalo/parasitologia , Trypanosoma brucei brucei/fisiologia , Animais , Sangue/parasitologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/parasitologia , Encéfalo/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Fatores de Tempo , Trypanosoma brucei brucei/metabolismo
17.
Cell Microbiol ; 13(10): 1470-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21824246

RESUMO

The vascular endothelium of the blood-brain barrier (BBB) is regarded as a part of the neurovascular unit (NVU). This emerging NVU concept emphasizes the need for homeostatic signalling among the neuronal, glial and vascular endothelial cellular compartments in maintaining normal brain function. Conversely, dysfunction in any component of the NVU affects another, thus contributing to disease. Brain endothelial activation and dysfunction is observed in various neurological diseases, such as (ischemic) stroke, seizure, brain inflammation and infectious diseases and likely contributes to or exacerbates neurological conditions. The role and impact of brain endothelial factors on astroglial and neuronal activation is unclear. Similarly, it is not clear which stages of BBB endothelial activation can be considered beneficial versus detrimental. Although the BBB plays an important role in context of encephalopathies caused by neurotropic microbes that must first penetrate into the brain, a crucial role of the BBB in contributing to neurological dysfunction may be seen in cerebral malaria (CM), where the Plasmodium parasite remains sequestered in the brain vasculature, does not enter the brain parenchyma, and yet causes coma and seizures. In this minireview some of the scenarios and factors that may play a role in BBB as a relay station to modulate astroneuronal functioning are discussed.


Assuntos
Astrócitos/fisiologia , Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Interações Hospedeiro-Patógeno , Neurônios/fisiologia , Animais , Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/virologia , Células Endoteliais/microbiologia , Células Endoteliais/parasitologia , Células Endoteliais/virologia , Humanos
18.
PLoS Negl Trop Dis ; 5(8): e1249, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21829738

RESUMO

BACKGROUND: The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3) per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay. METHODOLOGY/PRINCIPAL FINDINGS: For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3) parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards. CONCLUSIONS/SIGNIFICANCE: This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.


Assuntos
DNA de Protozoário/sangue , DNA de Protozoário/líquido cefalorraquidiano , Detergentes/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Trypanosoma brucei rhodesiense/isolamento & purificação , Tripanossomíase Africana/parasitologia , Animais , Primers do DNA , Eletroforese em Gel de Ágar , Humanos , Sensibilidade e Especificidade , Trypanosoma brucei rhodesiense/genética , Tripanossomíase Africana/sangue , Tripanossomíase Africana/líquido cefalorraquidiano
19.
Biosci Biotechnol Biochem ; 73(7): 1520-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19584534

RESUMO

Synthetic D- and L-amino acid type cationic 9-mer peptides (all sequences were synthesized as D- or L-amino acids) derived from the active sites of insect defensins were tested for their ability to modify the growth of blood-stream form African trypanosomes in vitro. One of them, the D-type peptide A (RLYLRIGRR-NH(2)), irreversibly suppressed proliferation of the Trypanosoma brucei brucei GUTat3.1 parasite. The presence of negatively charged phosphatidylserine on the surface of the parasites was demonstrated, suggesting electrostatic interaction between the peptide and the phospholipids. Furthermore, this peptide was found to alter trypanosome membrane-potentials significantly, an effect apparently due to the removal of the parasite's plasma membrane. The potential toxic effects of D-peptide A on mammalian cells was assessed using human brain microvascular endothelial cells. Only minor effects were found when the endothelial cells were exposed for 16 h to peptide concentrations of less than 200 microM. These findings suggest that insect defensin-based peptides represent a potentially new class of membrane-disrupting trypanocidal drugs.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Defensinas/química , Proteínas de Insetos/química , Oligopeptídeos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Encéfalo/irrigação sanguínea , Bovinos , Células Endoteliais/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microvasos/citologia , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/toxicidade , Fosfolipídeos/metabolismo , Estereoisomerismo , Tripanossomicidas/química , Tripanossomicidas/toxicidade , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura
20.
PLoS Negl Trop Dis ; 3(7): e479, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19621073

RESUMO

BACKGROUND: Using human brain microvascular endothelial cells (HBMECs) as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB) we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain). In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs) known as protease activated receptors (PARs) that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi) we found that in vitro PAR-2 gene (F2RL1) expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49%) and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q) with Pasteurella multocida toxin (PMT). PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain) and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q)-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.


Assuntos
Células Endoteliais/parasitologia , Receptor PAR-2/fisiologia , Trypanosoma brucei rhodesiense/patogenicidade , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Linhagem Celular , Inativação Gênica , Humanos , RNA Interferente Pequeno/genética , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...